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Aza-Henry reaction of substituted nitroalkanes using
a-formamidoaryl sulfones as N-acylimino equivalents
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Abstract—Base-promoted elimination of p-toluenesulfinic acid from N-formamidoaryl sulfones leads to the corresponding N-acyl-
imines that react with primary and secondary nitronate anions giving anti-b-formamido nitroderivatives in good yields and high
diastereoselectivity.
� 2006 Published by Elsevier Ltd.
The widespread interest in the nucleophilic addition of
nitronate anions to azomethine compounds stems from
the particularly high practical value of the obtained
products bearing two nitrogen atoms with different oxi-
dation status in adjacent position. Further synthetic
manipulation of these derivatives provides a gathering
of useful compounds, such as 1,2-diamines1 and a-amino
carbonyls prepared by reduction or Nef reaction of the
nitro group (Scheme 1).2

A less exploited option consists in the replacement of the
nitro function by hydrogen, leading to the correspond-
ing monoamino derivative.3 Concerning the nature of
the imino derivative, N-arylimines react with lithium
or silyl nitronates at low temperature giving predomi-
nantly anti-b-nitro amines, but activation of the imine
by Lewis or Brønsted acids seems mandatory for an effi-
cient addition.4 The electrophilic aptitude of the azo-
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Scheme 1.
methine carbon can be suitably enhanced by linking
electron-withdrawing substituents at the nitrogen atom.
In this context, N-acylimines are undoubtedly very elec-
trophilic compounds that can be made to react with a
large variety of nucleophilic reagents.5 Direct synthesis
of N-acylimines by condensation of their carbonyl and
amide precursors does not represent a viable protocol.
Conversely, base-promoted elimination of benzenesul-
finic acid from a-amido sulfones usually provides the cor-
responding N-acylimines that must be immediately used
in order to avoid extensive decomposition.6 a-Amido
sulfones are stable and mostly solid compounds that
can be readily obtained by a three-component coupling
of an aldehyde, amide and sodium benzenesulfinate.7

The enhanced reactivity of N-carbamoylarylimines
makes them ideal substrates for catalytic enantioselec-
tive aza-Henry reactions that are usually carried out at
low temperature for prolonged reaction times (24–60 h),
and require a large excess of nitroalkane (5–10 equiv).8

A more profitable way to use a-amido sulfones consists
in the in situ generation of the corresponding N-acyl-
imine by a suitable base and its immediate reaction with
a nitronate anion.9 The nature of the acyl moiety has a
deep impact on the reactivity of the N-acylimine and
affects the reaction time as well as the efficiency of the
related process. For practical reasons, carbamoyl groups
are often preferred with respect to other acyl substitu-
ents in N-acylimines because these derivatives are more
easily cleaved to the corresponding free amino groups.10

However, for some purposes, N-formylamido sulfones
have been demonstrated to be more effective than the
corresponding N-carbamoyl derivatives.11 A marked
reactivity of N-acylimino derivatives would result in
a shortening of reaction times and is particularly
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Table 1. Synthesis of N-Formyl-b-nitro derivatives 3 by reaction of N-
formylaryl sulfones 1 with nitroalkanes 2a

Entry Sulfone Nitro-
alkane

Productsb Yield
(%)c (dr)

1 1a 2a

3a 
Ph

NHCHO

NO2 90

2 1a 2b

3b 

Ph

NHCHO

NO2

91 (90:10)

3 1a 2e

3c 

Ph

NHCHO
n-C5H11

NO2

90 (90:10)

4 1a 2f

3d 

Ph

NHCHO
Ph

NO2

95 (95:5)

5 1a 2g

3e 

Ph

NHCHO

NO2

Ph 90 (95:5)

6 1b 2c

3f

pMeOPh

NHCHO
Et

NO2

94 (90:10)

7 1b 2d

3g 

pMeOPh

NHCHO
nBu

NO2

93 (92:8)

8 1c 2e

3h 

pNO2Ph

NHCHO
n-C5H11

NO2

88 (90:10)

9 1c 2g

3i 

pNO2Ph

NHCHO

NO2

Ph 89 (95:5)

Ph

NHCHO
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profitable when sterically hindered tertiary nitroalkanes
are used as reagents. We have observed that N-formylaryl
sulfones 112 are able to react with different nitroalkanes 2
in the presence of sodium hydride, giving the correspond-
ing b-formamido derivatives 3 in good yield (Scheme 2,
Table 1).

After 45 min at room temperature, the addition of nitro-
alkanes 2 to the intermediate N-formylimine, produced
by the elimination of p-toluenesulfinic acid from sulf-
ones 1, is complete and requires only a modest excess
(1.5 equiv) of the nitro compound.13 Nitromethane 2a
and primary nitroalkanes 2b–g afford the corresponding
N-formylamido nitro derivatives 3 in good yield (Table
1, entries 1–9). Compounds 3b–i are obtained as an
unseparable mixture of diastereomers in which anti-3
strongly predominates. The enhanced reactivity of sulf-
ones 1 is also demonstrated by their reaction with sec-
ondary nitroalkanes 2h–j that allows the formation of
adducts 3j–m with the same efficiency observed for pri-
mary nitroalkanes (Table 1, entries 10–13). The relative
stereochemistry of compounds 3 has been evaluated by
transformation of nitro derivative 3b into 1,2-diamine
4 (Scheme 3). Reduction of 3b using SmI2 affords the
corresponding N-formyl amino derivative, which upon
hydrolysis of the amido group in acid conditions leads
to known anti-1,2-diamine 4.14

Removal of the nitro group under reductive conditions,
also referred as denitration, represents a profitable
procedure that, when coupled with Henry reactions,
ultimately allows the addition of an alkyl framework
to C@X systems. Thus in this two-step process, nitronate
anions act as equivalents of alkyl anions that are usually
introduced by means of unstable organometallic re-
agents. Although a certain number of synthetic methods
are available in the literature to realize this conversion,3

the radical mediated substitution of the nitro group
using Bu3SnH as hydrogen atom donor is certainly far
superior and general with respect to other related proce-
dures.15 This denitrating system is particularly effective
when tertiary, benzylic or a-keto nitro derivatives are
used as substrates because of the high stability of the
corresponding alkyl radical that is formed as an inter-
mediate. The effectiveness of this method has been
R
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a All reactions were carried out at rt in THF, in the presence of NaH.
b All products were identified on the basis of their IR and NMR

spectra.
c Yields of pure products isolated by column chromatography.
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checked on a couple of tertiary N-formylamido nitro
derivatives 3l,m, which upon heating in a benzene solu-
tion in the presence of 2 equiv of Bu3SnH and a catalytic
amount of a radical initiator (AIBN) give the corre-
sponding formylamides 5 in good yield (Scheme 4).

In conclusion, N-formylaryl sulfones 1 promptly react
with nitroalkanes 2 in the presence of NaH giving the
corresponding aza-Henry adducts 3 in good yield and
high anti-diastereoselectivity. Reduction of the nitro
group and hydrolysis of the formyl protection from N-
formylamido nitro derivatives 3 provide an entry to
1,2-diamino derivatives. Products 3 obtained by reaction
of secondary nitroalkanes are particularly prone to
radical induced reduction that allows the preparation
of denitrated product 5.
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